

Context-aware Evaluation of Machine Translation (CAEMT) Systems

Sami Ul Haq Dublin City University

Sheila Castilho Dublin City University

Yvette Graham Trinity College Dublin

Current Evaluation Metrics

- Traditional evaluation metrics (e.g., BLEU¹) rely on surface-level n-gram overlap.
- Recent metrics (e.g., BERTScore²) address this limitation by leveraging continuous word embeddings to compute similarity in semantic space.
- However, token level embedding distance may overestimate similarity (e.g., between cat and dog).
- We propose **CAEMT**—which incorporates **cross-modal** semantic similarity from both textual and visual (image) modalities to enhance the reliability of MT evaluation.

¹Papineni, Kishore, et al. "Bleu: a Method for Automatic Evaluation of Machine Translation." ²Zhang, Tianyi, et al. "BERTScore: Evaluating Text Generation with BERT."

Our proposed approach (CAEMT)

Proposed workflow of CAEMT

Text₂: The cat is on the carpet.

text representations

		T_1	T_2	T_3	•••	T_N	
	l						1
		$I_1.T_1$	$I_1.T_2$	$I_1.T_3$	•••	$I_1.T_N$	
		$I_2.T_1$	$I_2.T_2$	$I_2.T_3$	•••	$I_2.T_N$	_
		$I_3.T_1$	$I_3.T_2$	$I_3.T_3$	•••	$I_3.T_N$	
:			::		٠.		
Ţ		$I_N T_1$	$I_N T_2$	$I_N T_3$	•••	$I_N T_N$	

- Use of Visual-Language Models (e.g., Jina³, CLIP⁴) to generate text and image representations.
- Cross-lingual cross-modal weighted cosine similarity between image and text for reference-based evaluation:

$$\omega * cos(v, t_i, t_i)$$

- Word matching in a **semantic space** (such as BERTScore) using word embeddings.
- Also, reference-free evaluation, directly comparing source with candidate text, using image as ground truth.

³Koukounas, Andreas, et al. "jina-clip-v2: Multilingual multimodal embeddings for text and images." arXiv preprint arXiv:2412.08802 (2024). ⁴Hessel, Jack, et al. "CLIPScore: A Reference-free Evaluation Metric for Image Captioning." Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.

CAEMT vs traditional metrics: initial results

Candidate_(c): a calico cat is cuddling with an orange dog on a blanket.

Eine graue Katze kuschelt mit einer orangefarbenen

Reference_(r):

Source_(s):

Katze auf einer Decke.

a grey cat is cuddling with an orange cat on a blanket.

Metric*	Score
BLEU _{c, r}	↑ 59.20 ×
TER _{c, r}	↓ 16.70 ×
BERTSCORE _{c, r}	↑ 94.70 ×
COMET-22 _{c, r}	↑84.10 ×
CAEMT _{r, i}	↑ 0.43 ✓
CAEMT _{c,i}	↓ 0.37 ✓
CAEMT _{c, r, i}	↑ 0.49
CAEMT _{c, s}	↓0.77 🗙

*For CAEMT we have used multilingual multimodal jina-clip-v2 model with transformer API to calculate the text-text and text-image cosine similarity. For other metrics we used online MATEO tool (https://mateo.ivdnt.org).

This research was conducted with the financial support of Science Foundation Ireland at ADAPT, the SFI Research Centre for Al-Driven Digital Content Technology at DCU [13/RC/2106_P2]. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

Training in Digitally-Enhanced Reality

